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We implement the rotationally invariant formulation of the two-dimensional Hubbard model, with nearest-
neighbors hopping t, which allows for the analytical study of the system in the low-energy limit. Both U�1� and
SU�2� gauge transformations are used to factorize the charge and spin contributions to the original electron
operator in terms of the corresponding gauge fields. The Hubbard Coulomb energy U term is then expressed in
terms of quantum phase variables conjugate to the local charge and variable spin-quantization axis, providing
a useful representation of strongly correlated systems. It is shown that these gauge fields play a similar role as
phonons in the BCS theory: they act as the “glue” for fermion pairing. By tracing out gauge degrees of
freedom, the form of paired states is established and the strength of the pairing potential is determined. It is
found that the attractive pairing potential in the effective low-energy fermionic action is nonzero in a rather
narrow range of U / t.
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I. INTRODUCTION

Superconductivity represents a remarkable phenomenon
where quantum coherence effects appear at macroscopic
scale.1 The quantum-mechanical phase of the electrons gains
rigidity and as a result the properties of the quantum wave
show up at the macro-macroscopic level. Thus, the supercon-
ducting properties are the manifestations of the spontaneous
breakdown of one of the fundamental symmetries of matter,
namely, the U�1� gauge symmetry. The discovery of the cu-
prate superconductors2 has sparked a widespread interest in
physics which goes beyond the traditional Fermi-liquid
framework usually employed for understanding the effect of
interactions in metals. The question of whether the pairing
interaction in the cuprate superconductors should be charac-
terized as arising from a “pairing glue” has recently been
raised.3 While there is a growing consensus that supercon-
ductivity in the high-Tc cuprates arises from strong short-
range Coulomb interactions between electrons rather than the
traditional electron-phonon interaction, the precise nature of
the pairing interaction remains controversial. In this context
the Hubbard model is considered as essential physical
system for treating superconductivity in the strongly corre-
lated electron systems and has been intensively studied
with a variety of methods such as quantum Monte
Carlo4,5 �QMC�, exact diagonalization,6,7 path-integral
renormalization-group,8 functional renormalization-group,9

and various quantum cluster methods.10 As a principal model
describing the electronic correlation in the system, the Hub-
bard model has been used in many works to study the pairing
instabilities which as usual are given by the second-order
effective interaction with respect to the Coulomb interaction.
In this context the structure of the pairing interaction, the
two-dimensional �2D� Hubbard model, has been recently
analyzed,11–13 where the dynamical cluster Monte Carlo ap-
proximation is applied to two-dimensional Hubbard model
with nearest-neighbors hopping and on site Coulomb inter-
action. The Monte Carlo simulations have been also em-
ployed to study the phase separation and pairing in the doped

two-dimensional Hubbard model.14 However, the question
whether the Hubbard model even supports superconductivity
without additional interactions remains a subject of contro-
versy. Different mean-field theories suggest conflicting
ground-state order parameters and correlations, while finite-
size QMC simulations for the doped 2D Hubbard model in
the intermediate coupling regime of correlation energy U
support in general the idea of a spin-fluctuation-driven inter-
action mediating d-wave superconductivity. However, the
fermion sign problem limits these calculations to tempera-
tures too high to study a possible transition. These simula-
tions are also restricted to relatively small system sizes so
that the off-diagonal long-range order has not been ascer-
tained. For theoretical understanding of the mechanism of
superconductivity in cuprates, the knowledge of bosons me-
diating the pairing is of pivotal importance. Here, the under-
lying attraction force appears very puzzling since it is hard to
reconcile the microscopic attractive interaction with the com-
pletely repulsive bare electron-electron forces. This issue is
closely related to the construction of the low-energy effective
theory for the electronic system. A powerful tool for the
quantitative investigation of microscopic models is provided
by the study of effective theories: if one is able to single out
the most relevant low-energy configurations, an effective
theory can be extracted from the microscopic lattice Hamil-
tonian. This procedure is often implemented via the projec-
tive transformation, which results in removing of high-
energy degrees of freedom and replacing them with
kinematical constraints as exemplified, e.g., by the t-J
model.15 In such approaches, the high-energy scale associ-
ated with the charge gap is argued to be irrelevant, hence the
focus exclusively on the spin sector to characterize the Mott
insulator. However, the charge-transfer nature of the cuprates
plays an essential role in the doped systems,16 so that with
discarding charge degrees of freedom an important part of
the physics may be lost. In the same spirit a detour from the
strict projection program was recently proposed in a form of
the “gossamer” superconductor,17 recognizing the role of the
double-occupancy charge configurations. However, the most
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interesting and relevant situation of strongly correlated sys-
tems, where magnetic as well as charge degrees of freedom
interact, was until now investigated to a much lesser extent
since it requires the treatment of the Hubbard Hamiltonian
without imposing any restrictions on the correlation energy
U.

In the present paper we study the emergence of the attrac-
tive pairing interaction in the two-dimensional Hubbard
model by resorting to the analytical method that is deeply
rooted in the inherent spin-rotational and gauge-charge sym-
metries of the model. To keep the spin-rotationally invari-
ance, we write the action of the system using other bosonic
and fermionic variables which are introduced with appropri-
ate U�1� and SU�2� transformations. We construct a SU�2�
spin-rotational and charge U�1� invariant theory using the
electron operator factorization.18,19 Furthermore, we derive
the low-energy fermionic action that rests on the SU�2�-
invariant character of the Hamiltonian and a consistent
scheme of coherent states within a functional-integral formu-
lation. We show that U�1� and SU�2� gauge fields �the col-
lective high-energy modes in the SC system� take over the
task which was carried out by phonons in BCS supercon-
ductors and play the role of the “glue” that is responsible for
the formation of the electron pairs. In this sense the present
work charts a route from the microscopic Hubbard model on
the square lattice to an effective lower energy action that
exhibits pairing potential. The paper is organized as follows.
Section II introduces the model and rotational invariant for-
mulation. Section III describes charge and spin gauge trans-
formations of fermions, which results in the phase-angular
representation of strongly correlated electrons. Section IV is
devoted to the evaluation of pairing interaction, while Sec. V
discusses the effective fermionic action. We conclude with
Sec. VI. Appendixes A–C contain miscellaneous results that
pertain to the technical aspects of the work.

II. HUBBARD MODEL IN THE ROTATING REFERENCE
FRAME

The basic physics of strongly correlated electronic sys-
tems is the competition between the two tendencies of the
electron to spread out as a wave and to localize as a particle
combined with magnetism. That is, the interplay of the spin
and the charge degree of freedom is the central issue. These
features are encoded in by the Hubbard Hamiltonian—the
simplest yet nontrivial model for strongly correlated elec-
trons. The relevance of this model for superconducting cu-
prates originates from the observation that the one-band
Hubbard model tries to mimic the presence of the charge-
transfer gap of cuprates by means of an effective value of the
Coulomb repulsion. Thus, our starting point is the purely
fermionic Hubbard Hamiltonian in the second-quantized
form

H = − t �
�rr��,�

�c�
†�r�c��r�� + H.c.� + �

r
Un↑�r�n↓�r� . �1�

Here, �r ,r�� runs over the nearest-neighbor �n.n.� sites, t is
the hopping amplitude, U stands for the Coulomb repulsion,
while the operator c�

†�r� creates an electron with spin

�= ↑ ��1� , ↓ ��2� at the square lattice site r. Furthermore,
n�r�=n↑�r�+n↓�r� is the number operator, where n��r�
=c�

†�r�c��r�. Usually, working in the grand canonical en-
semble a term −��rn�r� is added to H in Eq. �1� with �
being the chemical potential. We treat the problem of inter-
acting fermions at finite temperature in the standard path-
integral formalism20 using Grassmann variables for Fermi
fields, c��r�� depending on the “imaginary time” 0����
�1 /kBT �with T being the temperature� that satisfy the anti-
periodic condition c��r��=−c��r�+��, to write the path in-
tegral for the statistical sum Z=	�Dc̄Dc�e−S�c̄,c� with the fer-
mionic action

S�c̄,c� = SB�c̄,c� + 

0

�

d�H�c̄,c� , �2�

that contains the fermionic Berry term

SB�c̄,c� = �
r�



0

�

d�c̄��r����c��r�� . �3�

For the problem under study it is crucial to construct a co-
variant formulation of the theory, which naturally preserves
the spin-rotational symmetry present in the Hubbard Hamil-
tonian. For this purpose, the density-density product in Eq.
�1� we write, following Ref. 21, in a spin-rotational invariant
way

HU = U�
r
�1

4
n2�r�� − ���r�� · S�r���2� , �4�

where Sa�r��= 1
2����c�

†�r���̂���
a c���r�� denotes the vector

spin operator �a=x ,y ,z� with �̂a being the Pauli matrices.
The unit vector ��r��= �sin ��r��cos 	�r�� , sin ��r��

sin 	�r�� , cos ��r��� written in terms of polar angles la-
bels varying in space-time spin-quantization axis. Thus, the
Hubbard Hamiltonian should not change its form under a
rotation of the spin-quantization axis. This is not apparent in
the standard form of the interaction in Eq. �1�. The spin-
rotation invariance is made explicit by performing the angu-
lar integration over ��r�� at each site and time. By decou-
pling spin- and charge-density terms in Eq. �4� using
auxiliary fields ��r�� and iV�r��, respectively, we write
down the partition function in the form,

Z =
 �D��
 �DVD��
 �Dc̄Dc� 
 e−S��,V,�,c̄,c�, �5�

where �D���r�k

sin ��r�k�d��r�k�d	�r�k�
4� is the spin-angular in-

tegration measure. The effective action reads as

S��,V,�, c̄,c� = �
r



0

�

d���2�r��
U

+
V2�r��

U
+ iV�r��n�r��

+ 2��r����r�� · S�r��� + SB�c̄,c�

+ 

0

�

d�Ht�c̄,c� . �6�

We would like to stress that the fermionic fields in Eq. �6�
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are the physical ones and not due to an enlargement of the
Hilbert space like in a slave-boson treatment of the t–J
model.15 As we see in Secs. III A and III C, the gauge fields
will arise here by relating an SU�2� rotation in spin space and
a vector on the two sphere �S2�.

III. CHARGE AND SPIN GAUGE TRANSFORMATIONS
OF FERMIONS

The interaction term of the Hubbard Hamiltonian is quar-
tic in fermion operators. This is a nonlinear problem which is
not solvable except in some very special cases, such as one-
dimensional systems. Thus, a standard approach is the mean-
field approximation, sometimes called Hartree-Fock �HF� ap-
proximation, in which the quartic term is factorized in terms
of a fermion bilinear times an auxiliary field, which is usu-
ally treated classically. However, HF theory will not work for
a Hubbard model in which U is the largest energy in the
problem. One has to isolate strongly fluctuating modes gen-
erated by the Hubbard term according to the charge-U�1� and
spin-SU�2� symmetries.

A. U(1) charge transformation

We switch now from the particle-number representation to
the conjugate phase representation of the electronic degrees
of freedom. To this aim the second-quantized Hamiltonian of
the model is translated to the phase representation with the
help of the topologically constrained path-integral formal-
ism. To this end we write the fluctuating “imaginary chemi-
cal potential” iV�r�� as a sum of a static V0�r� and periodic

function V�r��=V0�r�+ Ṽ�r�� using Fourier series,

Ṽ�r�� =
1

�
�
n=1

�

�Ṽ�rn�ein� + c.c.� �7�

with n=2�n /� �n=0, �1, �2� being the �Bose� Matsub-
ara frequencies. Now, we introduce the U�1� phase field
��r�� via the Faraday-type relation,

�̇�r�� �
���r��

��
= Ṽ�r�� . �8�

Since the homotopy group �1�U�1�� forms a set of integers,
discrete configurations of ��r�� matter, for which ��r��
−��r0�=2�m�r�, where m�r�=0, �1, �2, . . . Thus the de-
composition of the charge field V�r�� conforms with the ba-

sic m=0 topological sector since 	0
��̇�r��=	0

�Ṽ�r���0. Fur-
thermore, by performing the local gauge transformation to
the new fermionic variables f��r��,

�c��r��
c̄��r�� � = �z�r�� 0

0 z̄�r�� �� f��r��

f̄��r��
� , �9�

where the unimodular parameter �z�r���2=1 satisfies z�r��
=ei��r��, we remove the imaginary term i	0

�d�Ṽ�r��n�r�� for
all the Fourier modes of the V�r�� field, except for the zero
frequency.

B. SU(2) spin transformation

In the above description, we focused on the charge degree
of freedom of the electron. However, the electron has one
more degree of freedom being the spin. The spin dominates
the magnetic properties. The subsequent SU�2� transforma-
tion from f��r�� to h��r�� variables,

� f1�r��
f2�r�� � = ��1�r�� − �̄2�r��

�2�r�� �̄1�r��
��h1�r��

h2�r�� � �10�

with the constraint ��1�r���2+ ��2�r���2=1 takes away the ro-
tational dependence on ��r�� in the spin sector. This is done
by means of the Hopf map,

R�r���̂zR†�r�� = �̂ · ��r�� , �11�

where

R�r�� = ��1�r�� − �̄2�r��

�2�r�� �̄1�r��
� �12�

that is based on the enlargement from two sphere S2 to the
three sphere S3�SU�2�. The unimodular constraint can be
resolved by using the parametrization

�1�r�� = e−i/2�	�r��+��r��� cos���r��
2

�
�2�r�� = ei/2�	�r��−��r��� sin���r��

2
� �13�

with the Euler angular variables 	�r�� , ��r�� and ��r��,
respectively. Here, the extra variable ��r�� represents the
U�1� gauge freedom of the theory as a consequence of S2
→S3 mapping. One can summarize Eqs. �9� and �10� by the
single joint gauge transformation exhibiting electron opera-
tor factorization

c��r�� = �
��

z�r��R����r��h���r�� , �14�

where R�r�� is a unitary matrix defined by Eqs. �12� and
�13�, which rotates the spin-quantization axis at site r and
time �. Equation �14� reflects the composite nature of the
interacting electron formed from bosonic spinorial and
charge degrees of freedom given by R����r�� and z�r��, re-
spectively, as well as remaining fermionic core part h��r��.

C. Fermionic sector

Anticipating that spatial and temporal fluctuations of the
fields V0�r� and ��r�� will be energetically penalized, since
they are gaped and decouple from the angular and phase
variables. Therefore, in order to make further progress we
subject the functional in Eq. �6� to a saddle-point analysis
with respect to nonfluctuating �static� fields and variables
that fluctuations cost energy of the order of U. The expecta-
tion value of the static �zero-frequency� part of the fluctuat-
ing potential V0�r� in the charge sector we calculate by the
saddle-point method gives
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V0�r� = i�� −
U

2
nh� � i�̄ , �15�

where �̄ is the chemical potential with a Hartree shift origi-
nating from the saddle-point value of the static variable V0�r�
with nh=nh↑+nh↓ and nh�= �h̄��r��h��r���. Similarly in the
magnetic sector, a saddle-point evaluation of ��r� reproduces
the conventional Hartree-Fock equations for a commensurate
antiferromagnet

��r�� = �− 1�r�c, �16�

where �c=U�Sz�r��� sets the magnitude for the Mott-charge
gap �c�U /2 for U / t�1. The staggerization factor �−1�r

breaks the translation invariance by one site which remains
by two sites. The term is readily handled by going to the
reduced Brillouin zone.19 Note that the notion antiferromag-
netic here does not mean an actual long-range ordering—for
this the angular spin-quantization variables governed by the
rotational symmetry have to be ordered as well. To summa-
rize, the fermionic sector is governed by the effective Hamil-
tonian

H�,� = �
r

�c�− 1�r�h̄↑�r��h↑�r�� − h̄↓�r��h↓�r���

− t �
�r,r��,��

z̄�r��z�r����R†�r��R�r������h̄��r��h��r���

− �̄�
r�

h̄��r��h��r�� . �17�

The chief merit of the gauge transformation in Eq. �14� is
that we have managed to cast the Hubbard problem into a
system of h fermions submerged in the bath of strongly fluc-
tuating U�1� and SU�2� gauge potentials �minimally coupled
to fermions via hopping term� which mediate the interac-
tions.

IV. PAIRING INTERACTION

It is well known that the crucial point of BCS theory is the
existence of an attractive interaction among electrons, where
that phonons play the role of the “glue” responsible for the
formation of Cooper pairs. Here, by integration out the
bosonic scalar field that represents phonons in the fermionic
Hamiltonian, an effective attractive potential emerges. Now
we show that U�1� and SU�2� emergent gauge fields �the
collective high-energy modes in the Hubbard system� take
over the task which was carried out by phonons in BCS
superconductors. In a way similar to phonons these gauge
fields couple to the fermion density-type term via the ampli-
tude t, see Eq. �17�,

− t �
�r,r��,��

z̄�r��z�r����R†�r��R�r������h̄��r��h��r��� .

�18�

Thus, in order to obtain an effective interaction among fer-
mions we have to integrate out all the bosonic modes given
by z̄�r�� , z�r��� and R†�r�� , R�r��� fields. A major differ-
ence with respect to the BCS theory is that the variables to
be integrated out are of tensorial nature since SU�2� modes
carry spin index. To explicitly evaluate the effective interac-
tion between fermions by tracing out the gauge degrees of
freedom, we resort to the cumulant expansion. To this end

we write the partition function as Z=	�Dh̄Dh�e−S�h̄,h�, where
the effective fermionic action is

Seff�h̄,h� = − ln
 �D�D��e−S��,�,h̄,h�. �19�

The expression �19� generates a cumulant series when ex-
panded with respect to the hopping variable t. The relevant
second-order term that contains the quartic fermionic term
becomes

S�2��h̄,h� = − t2 �
�r1r1��

�
�r2r2��



0

�

d�d���z̄�r1��z�r1���z̄�r2���z�r2�����U�1�


 �
���

�
���

��R†�r1��R�r1��������R
†�r2���R�r2���������SU�2�h̄��r1��h���r1���h̄��r2���h���r2���� , �20�

where

�. . .�U�1� =

 �D�� . . . e−S���


 �D��e−S���

�21�

is the averaging over U�1� phase field while

�. . .�SU�2� =

 �D��e−S���


 �D��e−S���

�22�

is the averaging over spin-angular variables. To proceed with
the evaluation of the effective fermion-fermion interaction,
one has to develop procedures for effectuating both averages
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which involves calculation of the effective actions S��� and
S��� in charge and spin sectors, respectively.

A. U(1) average

The averaging in the charge sector is performed with the
use of the U�1� phase action �see Appendix A�

S��� = �
r



0

�

d�� �̇2�r��
U

+
2�

iU
�̇�r��� �23�

that contains both the kinetic and Berry terms of the U�1�
phase field in the charge sector. For the U�1� average in Eq.
�20� we get

�z̄�r1��z�r1���z̄�r2���z�r2�����U�1�

� ��r1r1�
�r2r2�

+ �r1r2�
�r1�r2

�e−U/2���−���−�� − ���2/��. �24�

Specializing to the low-temperature limit

lim
�→0



0

�

d��e−��−���U/2 = lim
�→0

� 2

U
−

2e−�U

2
� =

2

U
, �25�

we obtain the result for the U�1� phase average.

B. SU(2) average

1. Spin-angular action

The calculation of the SU�2� average is done with help of
the effective action that involves the spin-directional degrees
of freedom �, which important fluctuations correspond to
rotations. This can be done by integrating out fermions Z
=	�D��e−S��� where

S��� = − ln
 �D�Dh̄Dh�e−S�	,�,�,h̄,h� �26�

generates the low-energy action in the form S���=S0���
+SB���+SJ���. The interaction term with the spin stiffness
becomes

SJ��� =
J���

4 �
�rr��



0

�

d���r�� · ��r��� , �27�

with the antiferromagnetic �AF� exchange coefficient

J��c� =
4t2

U
�n↑ − n↓�2 �

4t2

U
�2�c

U
�2

. �28�

From Eq. �28� it is evident that for U→� one has J��c�
� 4t2

U since
2�c

U →1 in this limit. Thus, in the strong-coupling
limit, the half-filled Hubbard model maps onto the quantum
Heisenberg model. In this limit the fermions are bound into
localized spins. There is no motion of fermions since they
are suppressed by the gap for charge fluctuations. In general
the AF-exchange parameter persists as long as the charge gap
�c exists. However, J��c� diminishes rapidly in the U / t
→0 weak-coupling limit. Because the gauge field is the
phase factor arising in the inner product of quantum-
mechanical states—the so-called connection in mathematical

language—it is intimately related to the Berry phase term
SB��� in the effective action. If we work in Dirac “north
pole gauge” ��r��=−	�r�� one recovers the familiar form

SB��� =
�

i
�

r



0

�

d�	̇�r���1 − cos ��r��� . �29�

Here, the integral on the right-hand side of Eq. �29� has a
simple geometrical interpretation as it is equal to a solid
angle swept by a unit vector ��� ,	� during its motion.22

The extra phase factor coming from the Berry phase requires
some little extra care, since it will induce quantum-
mechanical phase interference between configurations. In re-
gard to the nonperturbative effects, we realized the presence
of an additional parameter with the topological angle or so-
called theta term

� =
�c

U
�30�

that is related to the Mott gap. In the large-U limit, one has
�c→U /2, so that �→ 1

2 relevant for the half-integer spin.
The kinetic-energy term in the spin sector becomes

S0��� = �
r



0

�

d�� 1

4Es
��̇2�r�� + 	̇2�r�� + �̇2�r��

+ 2	̇�r���̇�r��cos ��r���+� , �31�

where Es=1 / �2�T�, and

�T = �
1

8J
t � U

1

2�

1

t
� t

U
t � U� �32�

is the transverse spin susceptibility.

2. CP1 representation

In the CP1 representation, the spin-quantization axis can
be conveniently written as

��r�� = �
���

�̄��r����������r�� . �33�

As a consequence, all the terms in the spin action can be
expressed as functions of unimodular ���r�� fields instead of
difficult in handling angular variables. Finally, the action as-
sumes the form

S��̄,�� = �
r



0

�

d��2�T�̇�r�� · �̇�r�� − ��− 1�r���r�� · �̇�r��

− �̇�r�� · ��r���� − J �
�rr��



0

�

d�A�r�r���A�r�r��� ,

�34�

with the bond operators

A�r�r���A�r�r��� = −
1

4
��r�� · ��r��� +

1

4
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A�r�r��� =
�↑�r���↓�r��� − �↓�r���↑�r���

�2
. �35�

3. Canonical transformation of CP1 variables

In order to achieve a consistent representation of the un-
derlying antiferromagnetic structure, it is unavoidable to ex-
plicitly split the degrees of freedom according to their loca-
tion on sublattice A or B. Since the lattice is bipartite,
allowing one to make the unitary transformation

�↑�r�� → − �↓�r��

�↓�r�� → �↑�r�� �36�

for sites on one sublattice, so that the antiferromagnetic bond
operator becomes

A�r�r��� → A��r�r��� = �
�=1

2
���r�����r���

�2
. �37�

This canonical transformation preserves the unimodular con-
straint of the CP1 fields. Biquadratic �four-variable� terms in
the Lagrangian cannot be readily integrated in the path inte-
gral. Introducing a complex variable for each bond that de-
pends on “imaginary time” Q�r�r���, we decouple the four-
variable terms A��r�r���A��r�r��� using the formula

eSJ��,�� =
 �D2Q�e−��rr��	0
�d��2/J�Q�2+Q�·�+Q̄�·��,

D2Q = 
�rr���

d2Q�r�r��� , �38�

where d2Q=d Re Qd Im Q. In a similar manner by introduc-
ing a local real field A�r��, we can decouple the second term
in the right-hand side in Eq. �34�. To handle the unimodular-
ity condition, one introduces a Lagrange multiplier �����
with the help of the Dirac-delta functional,

���
r

���r���2 − N� =
 �D��

2�i
�e	0

�d�����r���2−N�, �39�

where the variables �↑�r�� and �↓�r�� are now unconstrained
bosonic fields. Thus, the local constraints are reintroduced
into the theory through the dynamical fluctuations of the aux-
iliary �� field, so that the statistical sum becomes

Z =
 �D2QD2�D��� 
 e−��rr��	0
�d��2�Q�2/J−���rr�+HQ��,���,

�40�

where

HQ��,�� = �
�rr��



0

�

d����� · ��rr� + Q� · � + Q̄� · �� .

�41�

Furthermore, by evaluating saddle-point values of the Q, a,
and �� fields

Qsp�r�r��� = −
J

2
���r�� · ��r���� ,

1 = ���r�� · ��r��� �42�

and by assuming the uniform solutions Qsp�r�r����Q,
asp�r�r����a, and ��sp������, we obtain for the Hamil-
tonian in the spin-bosonic sector

H��,�� =
1

2�N
�
kn�

�̄���kn�G�0k
−1 �n�����kn� �43�

with

����kn� = �
���k,n�

�̄��− k,− n�
���k − �,n�

�̄��− k + �,− n�
� �44�

and

G�0k
−1 �n� = �

n
2

Es
+ �� 2Q�k − 2i�n 0

2Q�k
n

2

Es
+ �� 0 2i�n

− 2i�n 0
n

2

Es
+ �� − 2Q�k

0 2i�n − 2Q�k
n

2

Es
+ ��

� .

�45�

Decoupling of the bond operators in the kinetic term of the
spin action in Eq. �34� leads to additional field Q, which
value is determined from the equation,

Q =
J���
zN

�
k

�kWk �46�

while the constraint parameter �� is the solution of the equa-
tion

1 =
J���

N
�
k

Wk �47�

with

Wk =
coth��Esk

− �k
−�� + coth��Esk

+ �k
−��

4��2 +
k

−

Es

+
coth��Esk

− �k
+�� + coth��Esk

+ �k
+��

4��2 +
k

+

Es

, �48�

where
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Esk
� �k

�� =
Es

2
���2 +

k
�

Es
� �� �49�

and

k
� = �� � 2Q�k, �50�

with �k= 1
2 �cos�kx�+cos�ky�� as the two-dimensional lattice

structure factor.

C. Fermionic action

We start the calculation of the effective fermionic action
with the first-order term with respect to the hopping element
t,

St
�1� = − t �

�rr��

�z̄�r��z�r����U�1�


 ��R†�r��R�r�������SU�2�h̄��r��h��r��� . �51�

The evaluation of the average with rotational matrices gives

��
��

�R†�r��R�r�������
SU�2�

h̄��r��h��r���

= �
�

����r�����r����SU�2�h̄↓�r��h↑�r���

− �
�

��̄��r���̄��r����SU�2�h̄↑�r��h↓�r���

= �
�

����r�����r�����h̄↓�r��h↑�r��� − h̄↑�r��h↓�r���� .

�52�

The first-order action is then in the form

St
�1� = − t̃ �

�rr��



0

�

�h̄↓�r��h↑�r��� − h̄↑�r��h↓�r���� , �53�

where t̃= tgc�d�gs�d� is the renormalized hopping, with
gc�d�= �z̄�r��z�r����U�1� and gs�d�=������r�����r����SU�2�
being the Gutzwiller-type charge and spin renormalization
factors.

D. Second-order contribution to the fermionic action

The calculation of the second-order contribution to the
effective fermionic action in Eq. �20� is more involved since
the SU�2� averages contain tensorial quantities of the form

M���,����r�,r���r��,r�� = ��R†�r1��R�r1�������


�R†�r2���R�r2���������SU�2�.

�54�

The sublattice transformation of the CP1 variables in Eq.
�36� translates to the transformation of the rotation matrix

R�r��→ R̃�r�� matrix

R�r�� = �i�̂y�R̃�r��� , �55�

where R̃�r�� is the transformed form of the rotation matrix

R̃�r�� = �− �2�r�� − �̄1�r��

�1�r�� − �̄2�r��
� . �56�

It is convenient to define the following bond operator con-
structed from the CP1 fields:

F�r�r��� =
�̄1�r���1�r��� + �̄2�r���2�r���

�2
. �57�

With the definition in Eq. �57� the matrix
M���,����r� ,r�� �r�� ,r�� will be written in a compact form
as

M���,����r�,r���r��,r�� = =��
FF FA − FA FF
− AF − AA AA − AF
AF AA − AA AF
FF FA − FA FF

�
���,���

�
SU�2�,

�58�

where ��� ,���= �11,12,21,22�. Now, we can rewrite the second-order fermionic action taking into account the nonvanishing
averages over CP1 fields �see Appendix C� to get

S�2��h̄,h� = −
t2

U
0

�

d� �
�rr��

M11,11�r�,r���r��,r���
�

h̄��r��h��r���h̄��r���h��r�� + M11,22�r�,r���r��,r��


��
��

h̄��r��h��r���h̄��r���h��r�� − �
�

h̄��r��h��r���h̄��r���h��r��� + M12,21�r�,r���r��,r��


��
��

h̄��r��h��r���h̄��r���h��r�� − �
�

h̄��r��h��r���h̄��r���h��r��� + M12,12�r�,r���r��,r��


��
��

h̄��r��h��r���h̄��r��h��r�� − �
�

h̄��r��h��r���h̄��r���h��r��� . �59�
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In deriving the above result, we made the observation that
the dynamics of spin variables is slower as compared to the
charge counterparts, allowing to treat SU�2� variables as lo-
cal in time R�r���=R�r��+ ���−����R�r��+O����−��2�
which leads to nonretarded interactions.23 Furthermore, with
the help of the operator identities from Appendix C we can
reduce Eq. �59� to a compact form

S�2��h̄,h� =
t2

U



0

�

d� � ��1n�r��n�r���

+ �2Ah��r�r���Ah��r�r��� + �3Sh�r�� · Sh�r���

+ �4n�r��� , �60�

where the interaction coefficients

�1 = f2�0� + 2g2�0� + g2�d� + 4f2�d� � 0,

�2 = − 2�6f2�d� + 2f2�0�� � 0,

�3 = 4�f2�0� − g2�d�� ,

�4 = 2g2�d� + 2f2�d� + 4g2�0� � 0, �61�

are given in terms of the CP1 normal �g� and anomalous �f�
correlation functions

g�r − r�� = − ����r���̄��r����SU�2�,

f�r − r�� = ����r�����r����SU�2�, �62�

which can be readily evaluated using the propagator of the �
fields in Eq. �44�.

V. HAMILTONIAN WITH PAIRING TERM

From the result in Eq. �59� we can deduce the spin-singlet
pairing possibility in the fermionic sector. To bring the
kinetic-energy term to a standard form, one performs a rota-
tion of the fermionic variables on one of the sublattices in a
manner similar to the bosonic transformation in Eq. �36�

h↑�r��� → − h↓�r��� ,

h↓�r��� → h↑�r��� . �63�

As a result the hopping term assumes the conventional form
that is diagonal in the spin indices

St
�1��h̄,h� = − t̃ �

�rr��,�



0

�

h̄��r��h��r��� , �64�

while the second-order term is given by

S�2��h̄,h� = �
�rr��



0

�

d���1n�r��n�r���

− �2Ah�r�r���Ah�r�r���� , �65�

where

Ah�r�r��� =
h↑�r��h↓�r��� − h↓�r��h↑�r���

�2
,

Ah�r�r��� =
h̄↓�r���h̄↑�r�� − h̄↑�r���h̄↓�r��

�2
, �66�

are the bond operators relevant for a singlet pairing. The
rotational invariance of the right-hand side in Eq. �65� is
manifest since

− Ah�r�r���Ah�r�r��� = Sh�r�� · Sh�r��� −
1

4
nh�r��nh�r��� .

�67�

The coefficients �1 and �2 are given by Eq. �61�. By noting
that g�d�=0 and f�0�=0 one obtains

�1 =
4t2

U
� f2�d� +

1

2
g2�0�� ,

�2 =
4t2

U
�3f2�d�� = J� 3Q2

J2���� , �68�

where the f , g-correlation functions can be computed with
the help of the CP1 propagators; see Eq. �45�. The effective
nonretarded interaction containing �2 in front of the
A�r�r���A�r�r��� term is negative and therefore constitutes
the attractive potential for fermion pairing. We can see that
the coefficient �2 is not just given by the bare AF exchange
J=4t2 /U but is renormalized downward by the quantity Q
that is related to the antiferromagnetic spin stiffness as de-
lineated in Sec. IV D dealing with the SU�2� spin sector. We
have calculated Q self-consistently using Eq. �46�. The result
is plotted in Fig. 1. Note that the pairing interaction survives
in rather narrow range of the Coulomb interaction 1.17
�U / t�1.41. This result suggests that superconductivity in
the Hubbard model, if possible, represents a rather delicate
balance between kinetic energy and Coulomb interaction. In
this context, we note that the deleterious effects of the Cou-
lomb interaction superconductivity in cuprates have been

T�0

Γ2

t

Γ2

J

1.15 1.20 1.25 1.30 1.35 1.40 1.45
0.00

0.02

0.04

0.06

0.08

0.10

U�t

FIG. 1. �Color online� Pairing interaction �2 normalized to the
hopping parameter t �upper curve� and the antiferromagnetic-
exchange parameter J=4t2 /U �lower curve� as a function of the
Coulomb interaction U / t calculated at zero temperature and half
filling �̄=0 for the two-dimensional Hubbard model with nearest-
neighbors hopping.
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largely ignored in the literature. Furthermore, since �1�0 in
the density-density term in Eq. �65�, many sorts of the
charge-ordered states can be stabilized, including e.g.,
charge-density wave states, which—in general—compete
with superconductivity. This is in contrast to the BCS theory
where the only instability of a Fermi liquid is the Cooper
instability; the superconducting order is generic.

VI. CONCLUSIONS AND PERSPECTIVES

The basic physics of strongly correlated electronic sys-
tems is the competition between the two tendencies of the
electron to spread out as a wave and to localize as a particle
combined with magnetism. That is, the interplay of the spin
and the charge degree of freedom is the central issue. While
there is a growing consensus that superconductivity in the
cuprates arises from strong short-range Coulomb interactions
between electrons rather than the traditional electron-phonon
interaction, the precise nature of the pairing interaction re-
mains controversial. While the principal focus of the present
work is theoretical, the choice of model and the approach is
motivated in the experimentally observed properties of cu-
prates. Therefore, in the present work we hope to shed some
light on this controversial issue with the purpose to under-
stand better the physical properties of most common model
for cuprates. To this end, we have discussed in the present
work the Hubbard model in the spin-rotational invariant for-
mulation which observes the important symmetries involved.
We presented a field-theoretic description of a microscopic
model that reveals an intimate relationship between the spin-
SU�2� and charge-U�1� symmetry and pairing. We found that
the maximal strength of the effective pairing interaction pa-
rameter is observed in a rather narrow range of U / t with the
kinetic energy comparable to the Coulomb interaction. More-
over, the form of the effective fermionic action suggests that
other competing ordered phases can occur simultaneously,
which can quench the superconductivity substantially. There-
fore, the issue of pairing interaction is not settling the ques-
tion about the long-range superconducting order in the Hub-
bard model. As far as modeling of cuprates is concerned
there is also a problem of interplane interaction, entirely
omitted in the present work, which can affect the bulk super-
conductivity considerably. In closing we note that the pairing
interaction itself cannot be measured directly: one needs to
analyze key experiments which reveal fingerprints of it.
Thus, the continuing experimental search for a pairing glue
in the cuprates is important and will play an essential role in
determining the origin of the high-Tc pairing interaction.
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APPENDIX A: U(1) PHASE AVERAGES

In this section we evaluate the expression for U�1� phase
propagator. Two point phase-phase propagator for the
Bosonic phase variables is defined as

gz�r�r���� = �z̄�r��z�r����� . �A1�

The averaging in this definition is over the U�1� phase field
and

�. . .� =

 D� . . . e−S0���


 D�e−S0���

. �A2�

Here the complex variables z�r�� are defined as z�r��
=ei��r��. The variables ��r�� satisfy the following boundary
conditions:

��r�� − ��r0� = 2�m�r� . �A3�

It is very convenient to satisfy the boundary conditions by
decomposing the phase field in terms of a periodic field
��r�� and a term linear in �. We set

��r�� = �̃�r�� +
2��

�
m�r� �A4�

with �̃���= �̃�0�. Summing over the phase field 	 means to
integrate all ��r�� configurations and perform the summa-
tion over the integers n. Then we write the phase variables
��r�� in the Fourier-transformed form

�̃�r�� =
�0�r�

�
+

1

�
�
n=1

�

��n�r�ein� + ���r�e−in�� . �A5�

The weight of the averaging in the expression of the phase
correlator is given by the following exponential:

e−S0��� = e−�r	0
�d��̇2�r��/U�̇e−S0�m�, �A6�

where the action S0�m� is the topological part of the action
and is given by

S0��� =
2

�U
�

r
�

n

��n�r��2

S0�m� = �
r
�4�2m2�r�

�U
−

4�i�

U
m�r�� . �A7�

Now, we evaluate the average. We write first the nontopo-
logical part of the action
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gz�r�r���� =

 �D��e−i��r��ei��r��e−2/�U�r�n��n�r���2


 �D��e−2/�U�r�n��n�r��2
= �r,r�


n=1

�

� U�

4n
2�e−U/2��n=1

� 1/n
2��sin�n��sin�n����2+�cos�n�� − cos�n����2�


n=1

�

� U�

4n
2�

. �A8�

By using the identity

�sin�x� − sin�y��2 + �cos�x� − cos�y��2 = 2 − 2�cos�x�cos�y�

+ sin�x�sin�y�� = 2 − 2 cos�x − y� , �A9�

one obtains

gz�r�r���� = �r,r�e
−U/��n=1

� 1/n
2�1−cos�n��−�����. �A10�

Now, in order to calculate the sum in the exponential we use
the following identity:

�x� −
x2

�
= �

n=1

� � 4

�n
2 −

4 cos�n��x
�n

2 � �A11�

where −��x��. And finally we get

gz�r�r���� = �r,r�e
−U/4���−���−�� − ���2/��. �A12�

Now we are ready to calculate the four-point phase correlator

�z̄�r1��z�r1��z̄�r2���z�r2����U�1� = �z̄�r1��z�r1���U�1�


�z̄�r2���z�r2����U�1�

+ �z̄�r1��z�r2�����U�1�


�z�r1���z̄�r2����U�1�.

�A13�

By using the result in Eq. �A12� we get Eq. �24�.

APPENDIX B: SU(2) AVERAGE

The composition formula for the rotational matrices in the
angular representation is given by

R†�r��R�ŕ�� =
1
�2� �1 + ��r����r���exp� i

2
�� �1 − ��r����r���exp� i

2
�̄�

− �1 − ��r����r���exp�−
i

2
�̄� �1 + ��r����r���exp�−

i

2
�� � , �B1�

where ������r�� ,��r��� ,z� is the signed solid angle spanned by the vectors ��r�� , ��r��� and z with �̄=����r�� ,
−��r����−2	�r��. In the complex projective representation, Eq. �B1� reads

R†�r��R�ŕ�� = � �̄1�r���1�r��� + �̄2�r���2�r��� − �̄1�r���̄2�r��� + �̄2�r���̄1�r���

− �2�r���1�r��� + �1�r���2�r�� �2�r���̄2�r��� + �1�r���̄1�r���
� . �B2�

The form of Eq. �B2� suggests the use of the bond operators
defined by Eqs. �35� and �57�, so that the product of rota-
tional matrices can be written in a compact form

R†�r��R�ŕ�� = �F − A
A F ��r�r���

R†�ŕ�r��R�r�� = � F A
− A F ��r�r��� . �B3�

With the help of the above equation it is easy to write down

the components of the M matrix. Under the transformation
the bond operators become

F�r�r��� → F��r�r��� =
�̄1�r���1�r��� − �̄2�r���2�r���

�2

A�r�r��� → A��r�r��� =
�1�r���2�r��� + �2�r���1�r���

�2
.

�B4�
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M12;21�r�,r���r��,r��

= ��R†�r��R�r����12�R†�r���R�r���21�SU�2�

= �A��r�r���A��r�r����SU�2� = ���̄1�r����̄1�r��

+ �̄2�r����̄2�r�����1�r���1�r�� + �2�r���2�r�����SU�2�

= ��
�,�

�̄��r����̄��r�����r�����r����SU�2�. �B5�

Furthermore, by implementing the Wick theorem to the CP1

averages

��̄��r����̄��r�����r�����r����SU�2� = ��̄��r����̄��r���SU�2�


����r�����r����SU�2� + ��̄��r������r���SU�2�


��̄��r�����r����SU�2� + ��̄��r������r����SU�2�


��̄��r�����r���SU�2� = ������f�− d�f�d�

+ ������g�d�g�− d� + ������g�0�g�0� . �B6�

In a similar manner

M11,11�r�,r���r��,r�� = 2�g2�0� − f2�d�� ,

M11;22�r�,r���r��,r�� = 2�f2�0� − g2�d�� ,

M12;21�r�,r���r��,r�� = 4f2�d� + 2g�d� + 2g�0� ,

M12;12�r�,r���r��,r�� = − �6f2�d� + 2f2�0�� , �B7�

where we have used that f�−d�= f�d� and g�−d�=g�d�. It is
not difficult to see that

M11,11�r�,r���r��,r�� = M22,22�r�,r���r��,r�� ,

M11;22�r�,r���r��,r�� = M22,11�r�,r���r��,r�� ,

M12;21�r�,r���r��,r�� = M21;12�r�,r���r��,r�� ,

M12;12�r�,r���r��,r�� = M21;21�r�,r���r��,r�� , �B8�

while all the remaining components of the M matrix vanish.

APPENDIX C: USEFUL OPERATOR IDENTITIES

By introducing the fermionic representation of the 1/2-
spin operators

Sh�r�� =
1

2�
��

h̄��r���̂��h��r�� �C1�

and the following bond operators:

Ah��r�r��� =
h↑�r��h↑�r��� + h↓�r��h↓�r���

�2
,

Ah�r�r��� =
h↑�r��h↓�r��� − h↓�r��h↑�r���

�2
,

Fh�r�r��� =
h̄↑�r��h↑�r��� + h̄↓�r��h↓�r���

�2
, �C2�

one can prove the following useful identities that involve
four-fermion products that appear in the second-order cumu-
lant expansion. For the spin and charge products, we have

Sh�r�� · Sh�r��� =
nh�r���

4
−

Ah�r�r���Ah�r�r���
2

−
Fh�r�r���Fh�r�r���

2
,

nh�r��nh�r���
2

=
nh�r���

2
+ Ah�r�r���Ah�r�r���

− Fh�r�r���Fh�r�r��� . �C3�

Furthermore, for the products of fermionic variables that ap-
pear in the calculation of the M matrix, one finds

�
��

h̄��r��h��r���h̄��r���h��r�� = nh�r�� −
nh�r��nh�r���

2

− 2Sh�r�� · Sh�r���

�
��

h̄��r��h��r���h̄��r���h��r�� = 2nh�r�� − nh�r��nh�r��� ,

�
��

h̄��r��h��r���h̄��r���h��r�� = nh�r��

− 2Ah��r�r���Ah��r�r��� , �C4�

where, by simple inspection, one can find that the spin-
rotational symmetry is apparent.

1 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 �1957�.

2 J. G. Bednorz and K. A. Müller, Z. Phys. B: Condens. Matter 64,
189 �1986�.

3 P. W. Anderson, Science 316, 1705 �2007�.
4 J. E. Hirsch, Phys. Rev. B 31, 4403 �1985�.
5 N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 �1992�.

6 G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, 6877
�1990�.

7 E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, and J. Riera,
Phys. Rev. B 45, 10741 �1992�.

8 T. Kashima and M. Imada, J. Phys. Soc. Jpn. 70, 2287 �2001�.
9 D. Rohe and W. Metzner, Phys. Rev. B 71, 115116 �2005�.

10 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.

EFFECTIVE PAIRING INTERACTION IN THE TWO-… PHYSICAL REVIEW B 78, 184511 �2008�

184511-11



Phys. 77, 1027 �2005�.
11 T. A. Maier, M. S. Jarrell, and D. J. Scalapino, Phys. Rev. Lett.

96, 047005 �2006�.
12 T. A. Maier, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 74,

094513 �2006�.
13 P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874

�1994�.
14 A. Moreo and D. J. Scalapino, Phys. Rev. B 43, 8211 �1991�.
15 F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 �1988�; A.

M. S. Tremblay, B. Kyung, and D. Senechal, J. Low Temp.
Phys. 32, 424 �2006�.

16 J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55,
418 �1985�.

17 R. B. Laughlin, arXiv:cond-mat/0209269 �unpublished�.
18 T. K. Kopeć, Phys. Rev. B 73, 132512 �2006�.
19 T. A. Zaleski and T. K. Kopeć, Phys. Rev. B 77, 125120 �2008�.

20 See, for instance, J. W. Negele and H. Orland, Quantum Many
Particle Systems, Frontiers in Physics �Addison-Wesley, Read-
ing, MA, 1988�.

21 H. J. Schulz, Phys. Rev. Lett. 65, 2462 �1990�.
22 A. Auerbach, Interacting Electrons and Quantum Magnetism

�Springer-Verlag, New York, 1994�.
23 It is evident that the retardation plays a crucial role in the BCS

mechanism. In the typical metallic superconductor, the Fermi
energy EF is of the order of several 10 eV while phonon fre-
quencies D are of the order 10−2 eV, therefore EF /D�103.
Since the renormalization of the Coulomb pseudopotential is
logarithmic, this large value of the retardation is required. In the
cuprate superconductors, on the other hand, EF /D�EF /2�0

�5, where �0 is the superconducting gap, so the high-
temperature superconducting materials are clearly in the nonre-
tarded regime.

V. A. APINYAN AND T. K. KOPEĆ PHYSICAL REVIEW B 78, 184511 �2008�

184511-12


